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Summary

Idiosyncratic drug-induced liver injury (DILI) is a common cause
for drug withdrawal from the market and although infrequent,
DILI can result in serious clinical outcomes including acute liver
failure and the need for liver transplantation. Eliminating the
iatrogenic ‘‘harm’’ caused by a therapeutic intent is a priority in
patient care. However, identifying culprit drugs and individuals
at risk for DILI remains challenging. Apart from genetic factors
predisposing individuals at risk, the role of the drugs’ physico-
chemical and toxicological properties and their interactions with
host and environmental factors need to be considered. The influ-
ence of these factors on mechanisms involved in DILI is
multi-layered. In this review, we summarize current knowledge
on 1) drug properties associated with hepatotoxicity, 2) host
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factors considered to modify an individuals’ risk for DILI and clin-
ical phenotypes, and 3) drug-host interactions. We aim at clarify-
ing knowledge gaps needed to be filled in as to improve risk
stratification in patient care. We therefore broadly discuss rele-
vant areas of future research. Emerging insight will stimulate
new investigational approaches to facilitate the discovery of clin-
ical DILI risk modifiers in the context of disease complexity and
associated interactions with drug properties, and hence will be
able to move towards safety personalized medicine.
� 2015 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

Drug-induced hepatotoxicity is one of the major concerns in
medical practice. Although it is relatively uncommon,
drug-induced liver injury (DILI) is the leading cause of acute liver
failure in the US and a major reason for liver transplantation [1].
Many marketed drugs, herbs and dietary supplements have a
potential to cause liver injury. In preclinical studies, about 50%
of candidate compounds present hepatic effects at
supra-therapeutic dose and face drug attrition [2]. DILI is also a
major cause for drug failure in clinical trials and frequently
results in regulatory actions and drug withdrawal [3,4].

The incidence of DILI in general populations is about 14–19
per 100,000 inhabitants [5,6], while frequency estimated in a
healthcare system is around 30–33 per 100,000 persons [7].
The reported incidence and severity of DILI varies among drugs
[6,7], suggesting that drug properties have a role in DILI risk
determination. Conversely, drugs with DILI potential cause liver
injury only in a small portion of patients indicating that host fac-
tors play a major role in DILI development.

DILI is classified into intrinsic vs. idiosyncratic liver injury,
reflecting a dominant role of drug toxicity (dose-dependent) vs.
host factors (no dose dependence) in liver injury. With a few
exceptions (i.e., acetaminophen), most of DILI experienced in
humans are considered idiosyncratic. However, inflammatory
stress may influence the dose-response curve towards
15 vol. 63 j 503–514
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Fig. 1. Current mechanistic understanding in the initiation and progression
events relevant to idiosyncratic drug-induced liver injury. Two mechanistic
cascades, (A) Sterile inflammation caused by drug-induced cytotoxicity vs. (B)
Immune response via antigen presenting cells (APCs) and/or helper T-cells. Drugs/
reactive metabolites exert direct toxicity or form adducts leading to hapteniza-
tion. Cells respond by activating adaptive pathways. Injured hepatocytes release
‘‘danger signals’’, such as the damage associated molecular patterns molecules
(DAMPs) which favour the release of pro-inflammatory cytokines to induce a T/B-
cell response against hepatocytes. The HLA associations discovered in GWAS
suggest that the adaptive immune response is an upstream event. The innate
immune system can either co-stimulate the adaptive immunity or modulate the
degree of inflammation and regeneration.
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sensitization for toxicity at therapeutic doses, making the two
DILI types less distinct [8]. Indeed, around 10% of
acetaminophen-induced acute liver failure cases occurred at rec-
ommended dosage, suggesting host factors modify individual
risks of acetaminophen liver injury [9,10]. Besides, drug dosage
is a well-known determinant of idiosyncratic DILI [11,12]. Thus,
the two entities may rather coincide in human DILI.

The current mechanistic understanding of DILI is depicted in
Fig. 1. The key mechanisms in DILI are two-fold: 1) drug/metabo-
lite exposure to a threshold level, determined by the dose and
drug handling of the liver, and 2) the adaptive immune response
or ‘‘alarm-signalling’’ by the damage associated molecular pat-
tern molecules (DAMPs) [13]. Cellular damage occurs at an intri-
cate balance between toxic drug exposure and defence
mechanisms. Once cells are damaged, innate and adaptive
responses kick-in and play a significant role in driving tissue
inflammation and injury. The degree of local tissue inflammation
and injury, in a balance with tissue repair, influences overall tis-
sue damage and determines clinical outcome. Drug exposure and
properties of administered drugs play primary roles at the initial
stages of cellular damage while host factors drive ‘host responses’
to toxic insults with the induction of cellular repair programs.

This review will systematically update the current knowledge
on drug properties associated with hepatotoxicity, discuss vari-
ous host factors that may contribute to individuals’ DILI risks
and clinical phenotypes, and allude to potential drug-host inter-
actions aiming at providing a structured conceptual framework
to guide future empirical research in this challenging field.

· Individual risks and clinical phenotypes of DILI are 
likely determined by a multi-faceted interplay between 
drugs’ physicochemical and toxicological properties, 
host factors and the interactions among them.

· Drug properties contributing to initial cell damage 
include surpassing a threshold dose, physicochemical 
characteristics such as lipophilicity, formation of reac-
tive metabolites, induction of oxidative stress, mito-
chondrial hazard and inhibition of hepatic transporters.

· Age, gender, genetic factors, pubertal development, 
hormonal and nutritional status, pregnancy, co-medi-
cations, underlying conditions and the gut microbiome 
influence key mechanistic components of DILI which 
can be classified into four categories: drug handling, 
toxicological responses, inflammation and immune re-
sponses, and the balance of tissue damage and repair.

· Further investigations on drug-host interactions are 
needed to integrate the drug signature data with patient 
clinical data that would enable the discovery of clinical 
DILI risk modifiers and their interactions with drug 
properties as to move towards safety personalized 
medicine.

· Developing new investigational approaches, involving 
bioinformatics and computer science may enhance the 
transferability of information and facilitate inter-discipli-
nary research in the field.

Key points
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Drug properties related to DILI risk in humans
Drugs within a therapeutic class differ regarding their hepatic liabil-
ity, suggesting that physicochemical and toxicological drug proper-
ties affect DILI risk. Typical examples are thiazolidinediones, of
which troglitazone was withdrawn from market due to fatal hepa-
totoxicity, while rosiglitazone and pioglitazone were less harmful
to the liver. Among drug properties, factors contributing to initial
cell damage include surpassing a threshold dose, physicochemical
characteristics, reactive metabolites formation, oxidative stress,
mitochondrial hazard and inhibition of hepatic transporters.

Threshold dose

Idiosyncratic DILI is considered dose-independent; most DILI
cases occur at therapeutic dose in an individual despite being
well tolerated in the general populations. However, in preclinical
testing, hepatotoxicity is often predicted at high drug exposure
leading to several stress responses in hepatocytes [14]. The con-
ventional concept of dose independency is being challenged [15].
Uetrecht firstly suggested that idiosyncratic DILI was rarely
observed with drugs given at daily doses of 610 mg [16] and
many drugs withdrawn from market or issued with a boxed
warning (e.g. nimesulide, bosentan) due to hepatotoxicity, were
prescribed at daily doses P50 or 100 mg [17,18]. Moreover,
DILI patients in large cohorts from Spain and Iceland [6,19] and
81% of non-acetaminophen DILI patients undergoing liver trans-
plantation in the United States received medications with daily
doses of P50 mg [1]. Therefore, a significant association between
daily dose and poor DILI outcome (i.e. liver failure,
5 vol. 63 j 503–514
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transplantation and death) exists and was also found in a system-
atic survey based on pharmaceutical databases [11]. These evi-
dences suggest that surpassing a threshold dose is associated
with an increased risk of triggering liver injury among the treated
patients. Daily dose alone is, however, inadequate to reliably pre-
dict DILI risk from individual drugs because a majority of com-
pounds needs P50 mg to achieve efficacy [21].

Lipophilicity

A drug’s physicochemical property is known to affect cellular
uptakes and ADMET (absorption, distribution, metabolism, excre-
tion and toxicity). Chen et al. [12] explored the impact of
lipophilicity in combination with daily dose and found oral med-
ications at high daily doses (P100 mg) and a lipophilicity of logP
P3 to be significantly associated with severe DILI. Their study
demonstrated that both factors could individually predict hepato-
toxicity, while the ‘‘rule-of-two’’, which combines dose and
lipophilicity, performs better than daily dose alone, thus increas-
ing the positive predictive value from 85% to 96% while decreasing
the negative predictive value from 55% to 39%. Higher lipophilicity
could enhance DILI risk by facilitating drug uptake from blood into
hepatocytes, which conditions hepatic metabolism and may
result in a greater amount of reactive metabolites, subsequently
leading to an interaction with mitochondrial membranes and hep-
atocanalicuar transport [13,22]. Besides lipophilicity, other phys-
iochemical properties as molecular weight and total polar surface
area associate with in vivo toxicological outcomes [23,24].

Formation of reactive metabolites

Several lines of evidence suggests that the formation of reactive
metabolites play a central role in the pathogenesis of idiosyncratic
DILI [25]. Reactive metabolites can covalently bind proteins to
form drug-protein adducts that might trigger immune-mediated
reactions or exert direct toxicity [26,27]. Cholestasis may also be
a consequence of the canalicular secretion of reactive metabolites
or disintegration of labile glutathione and/or glucuronide conju-
gates thereby damaging cholangiocytes or triggering an immune
response. However, for a given drug, there is no clear-cut correla-
tion between the potential to form reactive metabolites in exper-
imental conditions and the actual incidence of hepatotoxicity in
humans [28]. Obach et al. [29] measured the formation of reactive
metabolites in vitro and found that metabolism-dependent cova-
lent binding with liver microsomes cannot distinguish hepato-
toxic and non-hepatotoxic drugs. Another experimental study
tested approximately 100 Merck drug candidates and found no
correlation between liver toxicity observed from in vivo animal
studies and the extent of covalent binding [30]. Within a given
drug class, specific chemical structures can render the compound
distinctly hepatotoxic. For instance, ebroditine, an antiulcer drug
pharmacologically related to famotidine, carries a bromobenzene
ring which undergoes metabolic activation to reactive epoxides
[31]. Likewise, temafloxacin and trovafloxacin share a unique
difluorinated side chain that does not occur in other quinolones
with much less hepatotoxicity [32].

Oxidative stress

Oxidative damage in the liver could be a consequence of cytosolic
oxidant stress after drug metabolism or could arise from oxidant
Journal of Hepatology 201
stress directly generated in mitochondria and the subsequent
inflammatory cell response by injured hepatocytes. Oxidative
stress is caused by an imbalance of reactive oxygen species
(ROS) formation (c-Jun N-terminal kinase, JNK) and its detoxifica-
tion by antioxidant defence systems (Nrf2/Keap1) [33]. The bal-
ance of products of oxidative stress, protective cellular defence
and cytokines modulating inflammation may be critical for DILI
susceptibility, severity and extent of injury. Increased ROS can
directly damage DNA, proteins, enzymes, and lipids in cells and
tissues and induce immune-mediated liver damage. Some drugs
(e.g. valproic acid) can induce enhanced generation of ROS by
interrupting the homeostasis of mitochondria respiratory chain
and triggering JNK signalling pathway, to subsequently activate
mitochondrial permeability and death of hepatocytes [33].
Recent reports suggest drug-induced oxidative stress also signif-
icantly correlate with DILI risk. Xu et al. identified ROS generation
along with mitochondrial damage and intracellular glutathione
depletion, as most important indicators contributing to hepato-
toxicity as determined by high content imaging in primary
human hepatocyte cultures [34].

Mitochondrial liability

Mitochondrial dysfunction plays a critical role in the pathogene-
sis of DILI by alteration of metabolic pathways and damage to
mitochondrial components [33,35]. Drugs such as stavudine
and amiodarone can induce steatosis/steatohepatitis by severely
altering mitochondrial function. Mitochondrial damage could
trigger hepatic necrosis and/or apoptosis, leading to activation
of cell death signalling pathways such as JNK when a critical
mitochondrial death threshold is surpassed [35,36]. This view
challenges the traditional paradigm, indicating that cell death is
rather an active process involving mitochondria thereby deter-
mining the fate of cells as opposed to overwhelming biochemical
injury [36]. Specifically, drugs can impair mitochondrial respira-
tion (valproic acid) and/or b-oxidation (aspirin, tamoxifen), trig-
ger mitochondrial membrane disruption (diclofenac) and
damage mtDNA (tacrine) [37–39]. Interestingly, Porceddu et al.
[40] reported a significant association between loss of mitochon-
drial integrity and the potential to cause DILI, based on the anal-
ysis of 124 chemicals/drugs.

Inhibition of BSEP and other hepatobiliary transporters

Hepatobiliary transporters, and particularly the canalicular ade-
nosine triphosphate (ATP)-dependent bile salt export pump
(BSEP), are responsible for the biliary excretion of several organic
compounds including bile acids. An impaired function of BSEP
determines the accumulation of cytotoxic bile acids in hepato-
cytes leading to the induction of oxidative stress and/or apoptosis
and necrosis by FAS-mediated pathways [41]. Drugs and/or
metabolites with capacity to inhibit BSEP in vitro have potential
to cause DILI as has been shown by Morgan et al. using
BSEP-inverted vesicles [42]. Although this approach enables pre-
clinical drug testing with some drugs shown to be potent BSEP
inhibitors and have either been withdrawn from the market
(troglitazone) or received warnings (imatinib) for hepatotoxicity,
others (pioglitazone, simvastatin) have a low potential for DILI
risk. Hence, BSEP inhibitory potency alone is insufficient for
determining DILI risk and additional factors should be consid-
ered. Recently, Aleo et al. demonstrated that drugs which carry
5 vol. 63 j 503–514 505
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a more serious DILI risk influence both BSEP and mitochondrial
activities [43]. Mitochondrial dysfunction would result in
impaired ATP production, and in conjunction with BSEP inhibi-
tion, might explain the synergistic link between mitochondria
and ATP-dependent transporters such as BSEP in DILI.

The hepatic canalicular transporter P-glycoprotein (P-gp) is a
well-known determinant in multidrug resistance in chemother-
apy [44]. Other hepatobiliary transporters of the multidrug resis-
tance protein (MRP) family are also involved in the excretion of
conjugated organic anions, bilirubin and drug metabolites.
Recent studies suggest that the consideration of MRP2/3/4 inhibi-
tion could improve the correlation with DILI risk in humans as
compared with BSEP inhibition alone [45], suggesting that
defects in transporters function modify drug disposition. Owing
to the fact that hepatocytes are highly polarized and transporters
function either bi- or mono-directional, the host and drug inter-
actions may lead to different phenotypes of DILI (i.e. cholestasis,
hepatocellular, steatosis).
Host factors modifying DILI risks and clinical phenotypes

Host factors contributing to individual susceptibility and clinical
phenotypes of DILI have not been systematically investigated. In
this section, we will provide cross-disciplinary view over host
factors influencing key mechanistic components of DILI, classified
into four categories: drug handling, toxicological responses,
inflammation and immune responses, and imbalance of tissue
damage and induction of repair processes.

Host factors influencing drug handling

Factors that modify the level of exposure to the reactive metabo-
lites and/or alter the disposition of the drug may critically influ-
ence the development of DILI. In individual cases, drug therapy
adjustments appear to change a drug’s hepatotoxic potential;
e.g. reducing the dose of mianserin [46] and prolonged dose
intervals of gefitinib [47] eliminated risk of hepatotoxicity while
atorvastatin dose escalation increased the risk of hepatotoxicity
[20]. These observations underpin the need of surpassing a
threshold dose to induce DILI in a unique susceptible individual
[20]. Inter-individual differences in drug tissue concentration
are further influenced by oral bioavailability, volume of distribu-
tion, visceral blood flow, drug metabolism, nutritional status,
excretion/transport, age and genetic and epigenetic factors.

Aging is known to influence the pharmacokinetics of drugs
due to decreased renal function and cytochrome-mediated hep-
atic metabolism, while reduced conjugation reactions seem to
be restricted to older frail patients [48]. Hence, older age likely
enhances DILI susceptibility. This concept, however, has not been
supported by data from large national DILI registries. In the
Spanish DILI Registry 46% of DILI patients were P60 years of
age and the US Drug-Induced Liver Injury Network (DILIN)
reported 18.5% of DILI patients to be 65 years or older [49,50].
In a population-based study done in Iceland, a relationship
between DILI incidence and increasing age was observed, proba-
bly related to a greater exposure to polypharmacy in older sub-
jects [6]. Apparently, the type of liver injury differed with age
with younger patients presenting more frequently hepatocellular
damage as compared to cholestatic/mixed injury seen in the old
[49,51]. The risk of developing valproic acid-induced
506 Journal of Hepatology 201
hepatotoxicity with fatal outcomes is higher in children below
the age of two [52]. Hepatotoxicity induced by isoniazid appears
to be more frequent in older patients. A retrospective study in
3377 adults receiving isoniazid therapy demonstrated that the
DILI incidence was about two-fold amongst 35–49 years old
and almost five-fold in P50 years old patients as compared to
the 25–34 years old ones [53].

Furthermore, gene expression of drug metabolizing enzymes
and transporters vary significantly among individuals, being
influenced by genetic variants, epigenetic alterations, age, gender,
hormones, nutrition, alcohol, and co-medications [54]. Genetic
polymorphisms of drug metabolizing enzymes are estimated to
influence the clinical outcome in 20–25% of all drug therapies
[54]. Some racial differences in DILI caused by anti-tuberculosis
drugs have been attributed to variants of drug metabolizing
genes coding for NAT2, CYP2E1, GSTM1 and GSTT1 [55]. Thus,
polymorphisms of drug metabolizing enzymes and transporters
are considered as one of the key contributors in an individual’s
DILI risk [56].

Gender, pubertal development, sex hormones, pregnancy and
growth hormone levels also influence drug metabolizing
enzymes [57]. For instance, men have a higher clearance rate of
acetaminophen than women due to higher glucuronidation rates,
while CYP3A4, a major drug metabolizing enzyme, is expressed at
a higher rate in women [58]. Furthermore, cytokines released in
systemic infection inflammation significantly represses activities
of cytochrome P450 monooxygenases and transporters [59,60].
Consequently, in patients with systemic inflammatory response
syndrome, detoxification processes may significantly decrease
possibly requiring dose adjustment.

Lifestyle, disease conditions, and co-medications also modify
individual’s drug handling capability. Alcohol and high fat diets
are known to induce CYPs 2E1 and 4A. Alcohol-induced increase
in CYP2E1 has been associated with an increased risk of
acetaminophen-induced liver injury in humans, which is
explained by an increased generation of the reactive metabolite
N-acetyl-p-benzoquinone imine (NAPQI) [61]. Malnutrition and
cellular senescence could result in decreased xenobiotic clear-
ance and subsequently lead to slower drug elimination and
higher drug plasma levels. Additionally, several marketed drugs
are known to inhibit/induce specific drug metabolizing enzymes
and transporters [62], which potentially alter reactive metabolite
formation, drug conjugation, and/or drug elimination, and there-
fore modifying an individual’s DILI risk [61,62].

Host factors modifying toxicological responses

Drugs initiate cellular damage through diverse mechanisms:
reactive metabolite formation, which leads to covalent binding
to cellular proteins, oxidative stress, endoplasmic reticulum
stress, mitochondrial injury, DNA damage, epigenetic modifica-
tions, and/or inhibition of bile acid excretion (Fig. 1). Various
patients’ host factors may influence toxicological responses and
modify the risks of developing cellular damage.

Specifically, risk of inducing cellular damage through reactive
metabolites is affected by cellular detoxification mechanisms.
Patients with genetic defects in GST were reported to have an
increased risk of developing DILI caused by anti-tuberculosis
drugs [63], NSAIDs and antibacterials [64]. Slow acetylators of
NAT2 were also associated with moderate to severe DILI related
to anti-tuberculosis drugs [65]. Thus, at a given amount of
5 vol. 63 j 503–514
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reactive metabolite formation, those with diminished cellular
detoxification are at a higher risk of developing DILI.

Induction of cellular oxidative stress is another major toxico-
logical insult caused by drugs. The degree of drug-induced oxida-
tive insult may be modified by host’s pre-existing increased
cellular oxidants, increased substrates for oxidative reactions
(e.g., steatosis, lipid peroxidation), and/or decreased
anti-oxidants. Patients with functional polymorphisms in mito-
chondrial superoxide dismutase and glutathione peroxidase have
Table 1. Overview of drug/host factors influencing specific mechanisms involved in

Mechanistic factors Drug properties

Specific factors Examples

Threshold dose Daily dose [11,12] Duloxetine, gefitinib, 
bosentan, tacrine, 
leflunomide, methotrexate

Bioavailability*[12] Vancomycin, 
aminoglycosides, rifaximin
cromoglicate

Long half-life Azithromycin, tamoxifen

Covalent binding Significant hepatic 
metabolism [119]

Atorvastatin, tacrolimus, 
disulfiram, terbinafine

Reactive metabolite 
generation [38]

Acetaminophen, 
trovafloxacin+, isoniazid, 
phenytoin, carbamazepine
valproic acid, diclofenac

Oxidative stress Increase intracellular 
(e.g. mitochondria) 
oxidants [33]

Acetaminophen, 
troglitazone+, flutamide, 
nimesulide+, valproic acid
diclofenac

Mitochondrial 
liability

Impair mitochondrial 
respiration [38]

Paroxetine, valproic acid, 
troglitazone+, nefazodone

Inhibit beta-oxidation 
[38]

Amineptine+, ibuprofen, 
valproic acid, minocycline
aspirin 

Trigger mitochondrial 
membrane disruption 
[26]

Ciprofloxacin, diclofenac, 
indomethacin 

Damage mitochondrial 
mtDNA [26]

Tacrine, tamoxifen, 
stavudine and other NRTI

Hepatic 
transporters 
inhibition

Inhibit BSEP [42] Troglitazone+, bosentan, 
erythromycin, estradiol, 
simvastatin, rifampin, 
imatinib, nefazodone+

Inhibit other hepatic 
transporters (e.g., 
MDR3/ MPR2/MPR3/
MPR4) [42]

Itraconazole (MDR3), 
zafirlukast (MRP2), 
atorvastatin (MRP3/4), 
indomethacin (MRP3/4)
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a higher risk of developing DILI, especially for those culprit drugs
that are hazardous for mitochondria and/or form highly reactive
intermediates [63,66]. Other host factors influencing cellular
oxidative stress are listed in Table 1 [26,67,68]. A
female-specific susceptibility to oxidative stress in idiosyncratic
DILI has been reported [49].

Host factors influencing mitochondrial functions are listed in
Table 1 [26,69,70]. In normal mitochondrial biology, significant
amount of ROS is produced and usually appropriately detoxified
idiosyncratic drug-induced liver injury.

Host responses

Specific factors Examples

Drug absorption and 
hepatic delivery

Gastric emptying, gastrointestinal 
transit, nutrition, aging, 
atherosclerosis, portal hypertension

, 

A reduced drug 
clearance (i.e., 
prolongs half-life)

High body fat, elderly, renal 
dysfunction, hepatic dysfunction

Hepatic drug 
metabolism

Genotypes of drug metabolizing 
enzymes, age [120], sex [57], 
Inducers/inhibitors of drug 
metabolizing enzymes (e.g., co-
medications, alcohol, and diets)

, 

Impaired cellular 
proteins, repair/
degradation [121,122]

Reduction of thioredoxin/thioredoxin 
reductase, glutathione reductase, 
methionine sulfoxide reductase

, 

Increase cellular 
oxidants

Obesity/insulin resistance/NAFLD, 
advanced cellular senescence

Increase lipid 
peroxidation

Fatty liver

Depletion of 
antioxidants

Aging, obesity/insulin resistance/
NAFLD, genotypes related to 
cellular antioxidation (e.g., SOD2, 
GPx1) [26], nutrition, lack of 
estrogens [123]

+
Mitochondrial 
dysfunction

Genetic variants of mitochondrial 
enzymes, age, sex, sex hormones, 
advanced cellular senescence (e.g., 
insulin resistance/NASH, chronic 
inflammation) 

, 

s
Impair mitochondrial 
DNA repair

Genotypes of mitochondrial DNA 
polymerase γ [73]

Hepatic transporter 
regulations

Genotypes related to transporters 
(e.g., BSEP, MRP2/3/4), co-
medications, release of bacterial 
endotoxin due to increased intestinal 
permeability, altered hepatic FXR 
(e.g., NASH [124], bile acid pool and 
components [125])

Impair energy supply 
for hepatic transporters

Aging, cellular senescence/
mitochondrial dysfunction

(Continued on next page)
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Table 1 (Continued)

Mechanistic factors Drug properties Host responses

Specific factors Examples Specific factors Examples

Inflammation and 
immune responses

Anti-inflammatory 
drugs

Aspirin [126], coxibs [127], 
statins [128]

Pro-inflammatory 
conditions

Increased influx of LPS (e.g., 
alcohol abuse, intestinal diseases) 
[86,87], altered microbiome [129], 
chronic inflammatory diseases 
and viral infections, obesity [130], 
progesterone [81], depletion of bile 
acid pool [131]

Anti-inflammatory 
conditions 

Estrogens [81], androgens [26], 
co-medications (anti-inflammatory 
drugs)

Anti-TNFα drugs 
and other biological 
products 

Azathioprine, leflunomide, 
tacrolimus, adalimumab, 
infliximab

Modify immune 
responses

HLA, sex [27], sex hormones 
[132], co-medications 
(e.g., immunosuppressant, 
immunomodulator), epigenetic 
alterations (e.g., hydralazine and 
procainamide)[133], gut microbiota 
[129]

Immunosuppressants 
and 
immunomodulators

Glucocorticoids, opioids 
[134], antihistamines [135], 
statins [136]

Tissue injury and 
repair

Dominant induction of 
necrosis vs. apoptosis

Acetaminophen, 
troglitazone+, flutamide, 
diclofenac

Apoptosis vs. necrosis Sex [106], sex hormones [106], 
cellular energy supply [137]

Impair tissue repair Hydralazine derivatives 
(histone acetylation 
inhibition) [97], sympathetic 
stimulants [138, 139]

Tissue repair Aging [103], advanced cellular 
senescence [103], co-medications 
[93], altered FXR [140], sex [141], 
sex hormones [142]

*Drugs of very low bioavailability were associated with few DILI reports (e.g., acarbose).
+Drugs that were withdrawn from markets worldwidely or in some countries.
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[71]. However, mitochondrial aging, partly due to accumulated
oxidative mitochondrial DNA damage [38], may be affected by
other host factors such as over-nutrition (e.g., obesity, insulin
resistance, diabetes, and NASH) and alcohol [38,72]. Damaged
mitochondrial DNA is repaired and maintained by mitochondrial
DNA polymerase c, encoded by the nuclear gene POLG. A recent
gene-association study showed that about 50% of cases with
valproate-induced liver injury were heterozygous for POLG sub-
stitution mutations and its odds ratio was estimated as high as
24 [73]. Individuals with carnitine deficiency were also associ-
ated with an increased risk of valproate-induced liver injury
[74] while carnitine appears to be protective against
valproate-induced liver injury and improve survival in severe
cases.

Inhibition of bile acid transporter leads to intrahepatocellular
bile acid accumulation while inhibition of phosphatidyl choline
excretion (MDR2/3) alters bile composition and leads to cholan-
giocyte injury [75]. As shown in Table 1, hepatic transporters
are influenced by genetic variations, co-medications, bacterial
endotoxins and the farconoid xenosensing receptor (FXR), which
functions as a bile acid sensor and acts as a key regulator of meta-
bolic processes [41].

Bile acids salts are anionic detergents and highly toxic to the
cells. In bile, mixed micelle formation with cholesterol, phospho-
lipids, bile pigments, proteins, and inorganic electrolytes protects
cholangiocytes from the toxic detergent effect of bile acid salts.
Dysfunction of MDR3/ABCB4 (phosphatidyl choline translocation
across canaliculus membranes, regulated by FXR) has been asso-
ciated with clinical cholestasis, presumably via inhibition of
micelle formation, releasing free bile acids salts in bile [76].
Patients with primary biliary cirrhosis and extrahepatic bile
obstruction have decreased biliary bicarbonate secretion
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measured by positron emission tomography [77,78], suggesting
a potential susceptibility to drugs influencing bile components
(i.e., itraconazole) [78].

Host factors modulating inflammation and immune responses

Innate/adaptive immune response plays a key role in inducing
inflammation and determining the degree of ‘injury’ (Fig. 1).
Host factors known to modulate inflammation and immune
response which, in turn, may influence DILI susceptibility will
be discussed below.

Several genetic variants in the HLA regions were identified as
risk factors for DILI [56]. Carriers of the HLA-B⁄57:01 genotype
are at an 80-fold increased risk of flucloxacillin-induced DILI
[79]. DILI caused by other drugs (e.g. lumiracoxib, lapatanib,
ticlopidine, amoxicillin-clavulanate and ximelagatran) are also
associated with HLA genotypes [21]. Even causal drugs not
accompanied by hypersensitivity features show the association
with the HLA haplotypes, suggesting an important role of the
immune system in DILI [21].

Gender and sex hormones are well-known to influence
inflammation and immune response. An immune-mediated DILI
model showed gender bias in immune response and inflamma-
tion; more severe hepatitis, more antibody production, and a
higher level of pro-inflammatory hepatic cytokines in females
vs. males [80]. Indeed, females with DILI are at a higher risk of
developing acute liver failure or requiring liver transplantation
[19,49]. In halothane-induced DILI, estrogens reduce liver injury
in mice while progesterone exacerbates the damage possibly by
modulating inflammation and immune response. Indeed,
increased hepatic neutrophils and up-regulated hepatic mRNA
levels of pro-inflammatory cytokines were noted with
5 vol. 63 j 503–514
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progesterone pre-treatment whereas estradiol resulted in the
opposite effects [81].

Racial differences in inflammation and immune response are
also known. African-Americans are at a higher risk of developing
chronic DILI (defined as persistent liver alteration beyond six
months of DILI recognition), while Asians are associated with ear-
lier development of liver-related death or liver transplantation
[82]. Potential race-associated genetic variants enhancing inflam-
mation or adaptive immune response are warranted future
investigations.

Immune and inflammatory responses are also influenced by
medications co-administered at the time of drug exposure.
Previous data-mining using a large spontaneous adverse event
reporting system discovered latent associations between reduced
reporting frequency of liver events and various co-reported med-
ications. Among the identified medications, anti-inflammatory
agents and immunosuppressants were disproportionally preva-
lent [83,84]. Despite the preliminary nature of these observa-
tions, the associations suggest that the concomitant use of
anti-inflammatory and immunosuppressant agents may modu-
late host immune response and inflammation and impact DILI
occurrence. Other host factors potentially influencing inflamma-
tion and immune response are listed in Table 1.

The gut–liver axis plays a role in DILI. Increased intestinal per-
meability due to damaged intestinal mucosal barrier increases
hepatic endotoxin influx, which in turn activates Kupffer cells
and the production of pro-inflammatory cytokines, arachidonic
acid metabolites and ROS in the liver [85]. In experimental mod-
els, intestine-derived endotoxin or co-administration of LPS
enhances liver injury induced by chemicals [86,87], while
decreased intestinal permeability reduced liver injury [88].
Likely, a disrupted mucosal barrier induced by drugs (e.g.
NSAID), alcohol abuse, or intestinal disorders as seen with celiac
disease and inflammatory bowel disease, or acute enterocolitis
can act synergistically enhancing liver damage caused by hepato-
toxic drugs [14].

Whether pre-existing chronic liver diseases enhances the risk
of hepatotoxicity is hampered by the fact that recrudescence of
inflammation can go undistinguished from true injury induced
by a drug. A few examples, however, suggest potential enhance-
ment of drug hepatotoxicity by existing chronic inflammation (or
chronic viral infection). A previous retrospective study showed
that patients with pre-existing chronic liver injury are at an
increased risk of acute liver injury following acetaminophen
overdose [89]. Severe DILI cases caused by anti-retroviral medica-
tions are more commonly observed among patients co-infected
with hepatitis B and/or C virus [90]. Further, chronic hepatitis C
virus infection, human immunodeficiency virus (HIV) infection,
and autoimmune disease were associated with an increased risk
of DILI caused by anti-tuberculosis drug therapy [91,92].
Host factors modifying cell death, tissue injury and repair

The balance between tissue injury and repair needs to be consid-
ered with impaired tissue repair worsening the condition leading
to poor clinical outcome. This concept is supported by clinical stud-
ies, where the impact of co-medications on DILI outcome in
patients with acetaminophen-associated liver injury was exam-
ined [93,94]. Briefly, co-medications with drugs which ameliorate
liver injury and/or enhance liver repair in animal experiments (e.g.,
statins, fibrates, b-blockers, NSAIDs) were associated with a
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decreased likelihood of fatality (or lower MELD scores) among
acetaminophen-associated liver injury while co-medications with
drugs enhancing liver injury and/or impairing liver regeneration
(i.e., sympathetic stimulants) were associated with an increased
likelihood of fatality [93,94]. Potential beneficial impacts of lipid
lowering drugs (i.e., statins, fibrates) and anti-inflammatory
agents (e.g., NSAIDs, immunosuppressants) are associated with
improved clinical outcomes in patients diagnosed with dyslipi-
demia and collagen diseases among DILI cases [94,95].

Epigenetic modifications of host chromatin may impair regen-
eration following injury [96,97]. Loss of histone acetylation
results in impaired liver regeneration in mice after toxic injury
[96]. Impaired histone acetylation induced by todralazine (a
hydralazine derivative) also results in impaired liver regenera-
tion, which was correlated with clinical cases of drug-induced
acute liver failure [97]. Additionally, nutritional deficiencies
cause epigenetic modifications, which potentially alter individual
susceptibility to hepatotoxicity. Deficiencies of folic acids, vita-
min B12, and choline induce methyl donor depletion, contribut-
ing to hypomethylation of genes in cellular metabolism and
hepatocyte differentiation [98–100]. Folic acid deficiency is asso-
ciated with more severe liver damage in ethanol-fed micropigs
[101,102] while folic acid supplementation has been associated
with a reduced reporting frequency of liver events across differ-
ent agents with hepatotoxic potential in previous data-mining
analyses [83,84].

Age-related decline of mitochondrial function may also com-
promise energy supply for cellular metabolism and tissue regen-
eration [71,103]. In patients with hepatitis A, a likelihood of poor
clinical outcomes increases with increased age [104].
Decompensated cirrhosis is another factor of poor outcome.
Such patients require specific care in the selection of medications,
and drugs with significant hepatic metabolism should be avoided
[105].

Toxic insults can induce different forms for cell death. Unlike
apoptosis, necrotic cell death leads to plasma membrane distur-
bance and subsequent releases of its cellular contents, which
may induce an inflammatory response. Sexual dimorphism was
observed in such cell death regulations in other systems
[106,107]. An immune-mediated nephritis mouse model evi-
denced more apoptosis in females but more necrosis in males.
The observed gender-biased in cell death was partially mediated
by estrogen and Poly-(ADP-Ribose) Polymerase-1 (PARP-1) [106].
In one recent clinical analysis of DILI cases, the frequency of
apoptosis was increased in women at a given injury pattern
[108]. Further investigations are warranted to delineate the sus-
pected sex difference in cell death and its clinical relevance.
Drug-host interaction: what do we know and what should we
know, and how should we approach it

Both drug properties and host factors are multi-layered, influenc-
ing multiple mechanisms, and likely interact at multiple levels to
determine DILI susceptibility, clinical phenotypes and outcome.
Table 1 provides a structured summary of drug properties and
host factors relevant to human DILI, which is organized based
on mechanistic elements. Some combinations of drugs and host
factors may exert additive interactions on DILI risks, which may
explain clinical observations of high-risk populations for specific
agents. A few examples with suggested mechanisms are provided
in Table 2. A previous data-mining analysis showed that
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Table 2. Specific drug-host interactions influencing risks of idiosyncratic drug-induced liver injury [14].

Causative DILI 
agent

Drug properties Host responses Possible consequence of 
drug-host interactionKnown risk factors Suggested mechanisms

Valproic acid • High solubility, extensive 
metabolism

• Young age
(in particular <2-3 years)
• Antiepileptic co-medication

• Different CYP2C9 enzyme 
activity among developmental 
stages in children
• Enhance 4-ene-valproic acid 
metabolite formation by inducing 
CYP activities (CYP2A6, 
CYP2C9)

• Enhanced reactive 
metabolite generation

• Mitochondrial liability • Metabolic defects (impaired hepatic 
mitochondrial functions)
• Genetic variations in POLG
(mitochondrial DNA polymerase γ)

• Valproic acid undergoes 
β-oxidation and competes with 
endogenous lipids for enzymes 
and the mitochondrial CoA pool 
in this pathway.
• Impaired mitochondrial DNA 
replication

• Mitochondrial damage

Atorvastatin • High lipophilicity • Older age • Reduction in drug clearance • Threshold dose 

• Extensively metabolized by  
CYP3A4
• Reactive  metabolites

• Genotypes of drug metabolizing 
enzymes
• Co-medications (e.g. ketoconazole, 
nefazodone, ritonavir, erythromycin)

• Functional CYP3A4 
polymorphisms 
• Inducers/inhibitors of CYP3A4 

• Enhanced reactive 
metabolite generation 

• Immunomodulation • Women, older age • Autoimmune phenotype • Autoimmune hepatitis 
triggered by statins

Diclofenac • High solubility
• Extensive metabolism 
• Enterohepatic circulation

• Genotypes of drug metabolizing 
enzymes and transporters
• Co-medications

• Underlying genetic 
polymorphisms  in drug 
metabolizing enzymes (CYP2C8, 
UDPGT 2B7, GST), and  hepato-
canalicular transporters (BSEP, 
MRP2, MRP4)  
• Inducers/inhibitors of drug 
metabolizing enzymes and 
transporters. 

• Enhanced reactive 
metabolite generation 

and/or
• Delayed clearance of drug/
metabolites in hepatocytes, 
increase hepatic exposure

• Formation of acyl glucuronide 
and oxidative electrophilic 
quinine imines metabolites

• Genotypes of anti-oxidant system • Polymorphisms of SOD2 and 
GPX1

• Impaired anti-oxidation

• Mitochondrial liability • Preexisting diseases: osteoarthritis, 
rheumatoid arthritis, viral infections, 
diabetes mellitus 

• Pre-existing mitochondrial 
dysfunction: 
• Electrophiles derived from 
reactive metabolites causing 
mitochondrial dysfunction

• Mitochondrial damage

• Interaction with APC via MHC 
type II molecule

• HLA genotype [PPARγ-associated 
SNP, rs17036170: OR(95%CI) of 
11.3(4.9-25.9)]

• Innate and adaptive immune 
mediated

• Enhanced immune 
response

• Intestinal toxicity • Gut microbiome
• Pre-existing chronic inflammatory 
conditions

• Increased LPS influx due to 
compromised mucosal barrier, 
induced by diclofenac 
• Modulation of hepatic 
inflammation via C-reactive 
protein

• Enhanced hepatic 
inflammation 

Amoxicillin 
clavulanate

• High solubility
• Multi-drug regimens
• Poor metabolism 
• Biliary excretion

• Older men (>65 years) • Impaired drug clearance and 
prolonged exposure of the bile 
duct cells to the drug metabolite 
through canalicular excretion 

• Predominant cholestatic/
mixed injury among older 
subjects

• Interaction with APC via MHC 
type II molecule 

• Repeated prescription
• HLA genotypes:  North Europe,     
DRB1*1501-DRB1*0602 and 
HLA-A*0201;  
Spanish, hepatocellular  injury: 
HLA-A*3002 (OR = 6.7) and 
HLA-B*1801 (OR = 2.9), cholestatic  
injury: DRB1*1501-DRB1*0602 
• Racial disparities: Northern vs.
Southern Europeans Caucasian 

• Innate and adaptive Immune 
mediated

• Enhanced immune 
response
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mitochondrial liability was more prevalent among the drugs with
an increased pediatric reporting frequency, while cholestatic
manifestation, high lipophilicity and biliary excretion were more
common among the drugs associated with a higher reporting fre-
quency in the elderly, which might be explained by interactions
between specific drug properties and age-biased attributes [51].
Drug-host interactions also appear to exist between specific drug
properties and host genetic variants. Lucena et al. found that
SOD2Ala/Ala genotype was associated with an increased risk of
developing cholestatic/mixed injury induced by drugs with mito-
chondrial hazard [66]. Ulzurrun et al. suggested positive interac-
tion between drugs containing a carbocyclic system with
aromatic rings (e.g. NSAIDs) and a genetic variant, ABCC11 c.133
CC in DILI susceptibility [109]. Lastly, sexual dimorphism (XX
vs. XY) may contribute gender-specific susceptibility of neurons
and splenocytes to different cytotoxic agents, suggesting gender
bias in cellular toxicological responses [110]. Whether hepato-
cytes or cholangiocytes exerts similar gender-biased toxicological
responses requires future investigation.

Collectively, a conceptual framework explaining the relevance
of drug-host interactions in human DILI is depicted in Fig. 2. The
proverb of ‘‘the blind men and the elephant’’ teaches us the man-
ifold nature of truth; in the story, every one of the blind men
touches different parts of the elephant and describes it differently
without knowing that all stems from the same animal. Through
this analogy, we intent to highlight the different mechanisms
underlying human DILI. Future investigations targeting
drug-host interactions in an integrative system analysis will
favour unravelling the determinants that overlap and potentiate
each other on DILI. In this regard, recent progress in differentiat-
ing induced pluripotent stem cells makes it possible to develop
Drug

Toxicological responses
Covalent binding, haptenization,

oxidative stress, mitochondrial injury, ER stress
Host factors 

Genetic variants
Race/ethnicity

Age
Gender

Reproductive state
nutrition, alcohol, smoking

Lifestyles
Disease conditions

Medications
Gut flora

Drug properties

Physiochemical 
Pharmacological

Toxicological
Off-target activities

Host response to injury insult

Immune/
inflammation

Repair Tissue
injury

Clinical phenotype and outcome

Cellular injury initiation
Pharmacological responses

Reactive metabolites, drug elimination

Cell death
Apoptosis, necrosis, DAMPs release

Fig. 2. Conceptual framework explaining drug-host interactions in human
DILI. Two key players in DILI, drug and host factors may interact in a multi-
faceted manner at different functional pathways and determine individual
susceptibility, clinical phenotype and outcome. Mechanisms involved in the
initiation of cellular injury are likely drug specific and may occur as consequence
of the interaction between specific drug properties and host-specific activities.
Once injury is established host responses to the injury insult (i.e., immune
response, inflammation, tissue injury and repair) are mainly determined by host
factors. Such responses are likely modulated by various host factors such as age,
gender, genetic factors, lifestyles, disease conditions and co-medications.
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patient-specific hepatocytes as a ‘‘host dependent’’ assay system
to investigate drug-host interactions [111]. On the other hand,
introducing advanced bioinformatics methodologies, machine
learning [112], topic modelling [113], network analysis [114]
and deep learning techniques [115] to clinical analysis will
unmask hidden patterns/associations. Inter-disciplinary transla-
tion integrating preclinical knowledge, drug properties and clini-
cal phenotype is of critical importance for a better understanding
of human DILI. Development of standardized nomenclature, elec-
tronic form of knowledge base for hepatotoxic drugs and drug
properties [116], ranking/classification of post-marketing safety
profiles [117], and bioinformatics infrastructure to support
discovery-driven research will enhance the transferability of
information and facilitate inter-disciplinary research in the field.
Perspectives

This review aimed at highlighting current knowledge on drug
properties, host factors and drug-host interactions in human
DILI and identifying knowledge gaps to stimulate future investi-
gation. As individual risks and clinical phenotypes of DILI are
likely determined by a multi-faceted interaction between drug
properties and host factors, a new paradigm of DILI studies
should be directed to address not only host factors or drug prop-
erties alone but their interactions. Developing new investiga-
tional approaches involving bioinformatics and computer
science may become crucial in such future investigations.
Indeed, preclinical safety assessment is currently based on the
paradigm ‘‘high doses in healthy animals’’. However, biological
responses to drug treatment will inevitably differ in disease.
Therefore, the utility of experimental models that simulate host
conditions should be considered [118].

Current knowledge is still limited and insufficient for accurate
DILI risk prediction. Further investigations targeting drug-host
interactions will enable establishing patient’s risk stratification
and the development of a safety personalized medicine.
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